Filter

Mathematik

1 | Zahl und Variable
C | Mathematisieren und Darstellen
2. Die Schülerinnen und Schüler können Anzahlen, Zahlenfolgen und Terme veranschaulichen, beschreiben und verallgemeinern.
 
MA.1.C.2
Die Schülerinnen und Schüler ...
1 a   » können Anzahlen verschieden darstellen (z.B. mit Punkten oder Strichen) und verschieden anordnen (z.B. auf einer Linie und in der Fläche verteilt).
  b   » können Anzahlen bis 20 strukturiert darstellen (z.B. an 5ern und 10ern orientiert: 9 = 5 + 4; 12 = 10 + 2).
    » können Additionen und Subtraktionen mit Handlungen, Rechengeschichten und Bildern konkretisieren.
  c   » können die Bedeutung der Ziffern im Stellenwertsystem darstellen (z.B. 5 10-er-Stäbe und 7 1er-Würfel stellen 57 dar).
    » können Beziehungen in und zwischen Additionen und Subtraktionen zeigen oder beschreiben (z.B. in einer systematischen Aufgabenfolge die Veränderung der Summen aufzeigen).
d   » können Grundoperationen mit Handlungen, Sachbildern, Rechengeschichten und grafischen Strukturen veranschaulichen und Veranschaulichungen interpretieren.
  » können Beziehungen in und zwischen Grundoperationen zeigen und beschreiben (z.B. die Veränderung der Produkte 1 · 3, 2 · 4, 3 · 5, 4 · 6, ...).
2 e   » können die Bedeutung der Ziffern im Stellenwertsystem darstellen (z.B. 2 100er-Platten, 5 10-er-Stäbe und 7 1er-Würfel stellen 257 dar).
  f   » können Zahlenfolgen und Produkte veranschaulichen (z.B. 14 · 14 mit dem Malkreuz; die Zahlenfolge 1, 3, 6, 10, ... mit Punkten).
User image
  g   » können Gesetzmässigkeiten im Bereich der natürlichen Zahlen mit Beispielen konkretisieren (z.B. Quadratzahlen haben eine ungerade Anzahl Teiler → 16: 1, 2, 4, 8, 16).
    » können Brüche mit den Nennern 2, 3, 4, 5, 6, 8, 10 darstellen und vergleichen sowie Darstellungen interpretieren (z.B. Kreis-, Rechteckmodell, Zahlenstrahl).
    » können Zahlenfolgen mit positiven rationalen Zahlen beschreiben (z.B. ½, ¼, ⅛, ...; 0.7, 0.77, 0.777, ...).
h   » können Zahlenrätsel mathematisieren und erfinden (z.B. wenn man eine Zahl verdreifacht und um 3 vergrössert gibt es 33).
  » können Figurenfolgen numerisch beschreiben (z.B. die Anzahl sichtbarer Seiten bei Würfeltürmen mit 1, 2, 3, 4, ... Würfeln).
3 i   » können Terme geometrisch interpretieren (z.B. a² · b als Quader mit quadratischer Grundfläche, a · b als Rechteck mit den Seitenlängen a und b und a + b als Summe zweier Strecken).
    » können lineare Figurenfolgen in einen Term übertragen (z.B. die Anzahl benötigte Hölzchen, um eine Reihe von n gleichseitigen Dreiecken zu legen, als 2n + 1).
  j   » können Aussagen zu Zahlenfolgen und Termen numerisch belegen oder veranschaulichen (z.B. ½n(n+1) + ½(n+1)(n+2) ist eine Quadratzahl n = 1 → 1 + 3 = 4, n = 2 → 3 + 6 = 9, ... n = 6 → 21 + 28 = 49).
    » können lineares, quadratisches und exponentielles Wachstum in Termen, Zahlenfolgen und Graphen erkennen und Unterschiede beschreiben.